Organization of response areas in ferret primary auditory cortex.
نویسندگان
چکیده
1. We studied the topographic organization of the response areas obtained from single- and multiunit recordings along the isofrequency planes of the primary auditory cortex in the barbiturate-anesthetized ferret. 2. Using a two-tone stimulus, we determined the excitatory and inhibitory portions of the response areas and then parameterized them in terms of an asymmetry index. The index measures the balance of excitatory and inhibitory influences around the best frequency (BF). 3. The sensitivity of responses to the direction of a frequency-modulated (FM) tone was tested and found to correlate strongly with the asymmetry index of the response areas. Specifically, cells with strong inhibition from frequencies above the BF preferred upward sweeps, and those from frequencies below the BF preferred downward sweeps. 4. Responses to spectrally shaped noise were also consistent with the asymmetry of the response areas. For instance, cells that were strongly inhibited by frequencies higher than the BF responded best to stimuli that contained least spectral energy above the BF, i.e., stimuli with the opposite asymmetry. 5. Columnar organization of the response area types was demonstrated in 66 single units from 16 penetrations. Consistent with this finding, it was also shown that response area asymmetry measured from recordings of a cluster of cells corresponded closely with those measured from its single-unit constituents. Thus, in a local region, most cells exhibited similar response area types and other response features, e.g., FM directional sensitivity. 6. The distribution of the asymmetry index values along the isofrequency planes revealed systematic changes in the symmetry of the response areas. At the center, response areas with narrow and symmetric inhibitory sidebands predominated. These gave way to asymmetric inhibition, with high-frequency inhibition (relative to the BF) becoming more effective caudally and low-frequency inhibition more effective rostrally. These response types tended to cluster along repeated bands that paralleled the tonotopic axis. 7. Response features that correlated with the response area types were also mapped along the isofrequency planes. Thus, in four animals, a map of FM directional sensitivity was shown to be superimposed on the response area map. Similarly, it was demonstrated in six animals that the spectral gradient of the most effective noise stimulus varied systematically along the isofrequency planes. 8. One functional implication of the response area organization is that cortical responses encode the locally averaged gradient of the acoustic spectrum by their differential distribution along the isofrequency planes. This enhances the representation of such features as the symmetry of spectral peaks and edges and the spectral envelope.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Functional organization of ferret auditory cortex.
We characterized the functional organization of different fields within the auditory cortex of anaesthetized ferrets. As previously reported, the primary auditory cortex, A1, and the anterior auditory field, AAF, are located on the middle ectosylvian gyrus. These areas exhibited a similar tonotopic organization, with high frequencies represented at the dorsal tip of the gyrus and low frequencie...
متن کاملInnovative Methodology Large-Scale Organization of Ferret Auditory Cortex Revealed Using Continuous Acquisition of Intrinsic Optical Signals
Nelken, Israel, Jennifer K. Bizley, Fernando R. Nodal, Bashir Ahmed, Jan W. H. Schnupp, and Andrew J. King. Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals. J Neurophysiol 92: 2574–2588, 2004. First published May 19, 2004; 10.1152/jn.00276.2004. We have adapted a new approach for intrinsic optical imaging, in which images wer...
متن کاملCortico‐cortical connectivity within ferret auditory cortex
Despite numerous studies of auditory cortical processing in the ferret (Mustela putorius), very little is known about the connections between the different regions of the auditory cortex that have been characterized cytoarchitectonically and physiologically. We examined the distribution of retrograde and anterograde labeling after injecting tracers into one or more regions of ferret auditory co...
متن کاملLarge-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals.
We have adapted a new approach for intrinsic optical imaging, in which images were acquired continuously while stimuli were delivered in a series of continually repeated sequences, to provide the first demonstration of the large-scale tonotopic organization of both primary and nonprimary areas of the ferret auditory cortex. Optical responses were collected during continuous stimulation by repea...
متن کاملAcute Inactivation of Primary Auditory Cortex Causes a Sound Localisation Deficit in Ferrets
The objective of this study was to demonstrate the efficacy of acute inactivation of brain areas by cooling in the behaving ferret and to demonstrate that cooling auditory cortex produced a localisation deficit that was specific to auditory stimuli. The effect of cooling on neural activity was measured in anesthetized ferret cortex. The behavioural effect of cooling was determined in a benchmar...
متن کاملThe ferret auditory cortex: descending projections to the inferior colliculus.
Descending corticofugal projections are thought to play a critical role in shaping the responses of subcortical neurons. Here, we examine the origins and targets of ferret auditory corticocollicular projections. We show that the ectosylvian gyrus (EG), where the auditory cortex is located, can be subdivided into middle, anterior, and posterior regions according to the pattern of cytochrome oxid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 69 2 شماره
صفحات -
تاریخ انتشار 1993